来源:爱游戏平台下载 发布时间:2024-10-28 14:59:23
近年来,有一种特殊结构的材料,凭借其独特的结构和丰富的物理特性,成为量子材料研究的焦点——它就是笼目材料。 近些年来,有一类特殊结构的材料——“笼目材料”,成为凝聚态物理学家们的团宠。人们在这类材料中找到了铁磁性、超导、拓扑、电荷密度波等等各种丰富的物态,而且它们还呈现出一系列非常显著的量子输运特性,预示着巨大的应用潜力。 到底什么是笼目结构?以笼目结构单元构造出来的材料有什么特点?笼目材料作为新兴的量子材料,有什么重要的研究价值?现在,我们就来聊聊神奇多变的笼目结构材料。 笼目结构实际上在我们的生活中依旧很普遍的。如果你到南方去,就会发现许多编织好的竹笼、竹篓、竹篮,它们的洞都是六边形的,周围是六个等边三角形,也就是由一个个共享顶点的“六芒星”组成。类似的编织物在日本也很常见,日本有一首童谣就叫作“笼目笼目”,英文就是Kagome Kagome,其中kago就是篮子,而me就是眼睛的意思,直译过来就是“带眼的篮子”。 1951年,日本科学家Itiro Syoz提出了笼目结构材料这一概念,指的就是微观上的原子晶格也能构成顶点对顶点的六芒星阵列,也就是Kagome lattice,即“笼目晶格”。能够准确的看出,和正三角形、正四边形和正六边形一样,笼目结构单元也可以密集平铺二维平面的一种方式,又同时兼顾了六边形和三角形的特征。 为什么笼目结构材料如此特殊呢?如果我们仔仔细细地观察笼目晶格,就会发现其中的每一个原子,都需要和周围的四个原子进行化学键合,四个化学键呈对顶三角形的形状分布。假设该原子化学价态处于三价或四价之间,那么其中某个化学键就可能不太稳定,此时奇怪的事情就发生。比如某个方向上的顶角会发生畸变,这样材料整体的结构会存在一定的畸变,导致电荷分布也发生明显的变化,形成周期分布的电荷密度波。如果让电子左转一圈,或右转一圈,就会发现两者还存在一定的差异,意味着材料结构或电子态上存在手性。 更有意思的是,如果把原子加上磁矩,也就是说它们是诸如Co、Mn、Fe、Cu以及稀土离子那样的磁性原子,那么就会发现这个小磁针在三角形的每个顶点的放置方式很丰富。最简单的是磁矩取向完全一致并垂直于二维笼目平面,那就是一个铁磁体。如果把磁矩取向放到笼目平面内,那事情就变得没那么简单了,三个磁矩组合可以是互为120度夹角,这样做才能够稳定存在,但稍微偏离就很麻烦。因为对于两个原子磁矩组合来说,它们倾向于要么同向排列,要么反向排列;但是对于一个三角形的三个磁矩组合来说,如果要求两两反向,就会发现几乎不可能做到,即A和B相反,B和C相反,那么必然A和C会相同。这种现象在材料学中被称为几何阻挫,也就是说其中总是有某一个原子的状态“不舒服”,导致材料的性质变化多端。 笼目材料除了结构上这种“不安分”的阻挫效应,还在其微观电子态上出现一系列奇特性质。简单来说,在电子的能带结构上,我们能观测到诸如四重简并的狄拉克点、无色散的平带、范霍夫奇点等。这些名词听起来很拗口,大概意思是电子的能量-动量分布会呈现出比较反常的行为,比如能量-动量关系是简单的线叉,基本上没有动量依赖的状态,以及马鞍形状的分布状态等。正是由于这些很有趣的微观电子态的存在,意味着笼目材料在宏观状态上也会呈现一系列的特殊行为,我们统称为反常量子输运行为。例如量子反常霍尔效应、拓扑霍尔效应、量子自旋液体、巨大磁电阻效应、巨大能斯特效应,等等。这些效应为进一步构建新型的量子器件奠定了基础。在光学研究中也借鉴了笼目晶格的概念,可以构造出笼目光子晶体,让一束激光经过之后变成笼目形状,也是非常有意思。 笼目结构材料在低温下呈现出多种多样的状态。例如前面说到的铁磁体是很常见的,还有超导体、电荷密度波、自旋密度波等状态。而且由于笼目结构是准二维结构,如果不同的笼目平面堆垛在一起,还能出现堆垛的有序-无序相变,还可以人为设计构筑全新的材料。 具有笼目结构且兼具很强自旋涨落的材料,被认为是量子自旋液体的重要候选。近年来,在Cu、Ru、Co等化合物中寻找到了多个具有笼目结构的材料,它们中的磁性原子相互作用很强,但是往往到低温下又很难形成稳定的磁有序结构,所以自旋总是因为量子涨落在不断动来动去,就像液体性质那样,这个状态被称为量子自旋液体。 未来,若能够在笼目材料中寻找更为丰富物态,并加以调控,也有一定的可能实现低能耗、高稳定的拓扑量子计算。笼目材料作为团宠的日子,可谓是刚刚开始! 1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。
关注我们
微信公众号